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Abstract A single-sheeted double many-body expansion
(DMBE) potential energy surface is reported for the 1 2 A′′
state of NH2. To approximate its true multi-sheeted nature,
a novel switching function that imposes the correct behavior
at the H2(X 1�+

g )+ N(2 D) and NH(X 3�−) + H(2S) dis-
sociation limits has been suggested. The new DMBE form
is shown to fit with high accuracy an extensive set of new
ab initio points (calculated at the multi-reference configura-
tion interaction level using the full valence complete active
space as reference and aug-cc-pVQZ and aug-cc-pV5Z basis
sets) that have been semiempirically corrected at the valence
regions by scaling the n-body dynamical correlation terms
such as to account for the finite basis set size and truncated
configuration interaction expansion. A detailed study of the
N(2 D) · · · H2(X 1�+

g ) van der Waals region has also been
carried out. These calculations predict a nearly free rigid-
rotor with two shallow van der Waals wells of C2v and C∞v

symmetries. Such a result contrasts with previous cc-pVTZ
calculations which predict a single T-shaped van der Wa-
als structure. Except in the vicinity of the crossing seam,
which is replaced by an avoided intersection, the fit shows
the correct physical behavior over the entire configurational
space. The topographical features of the new DMBE poten-
tial energy surface are examined in detail and compared with
those of other potential functions available in the literature.
Amongst such features, we highlight the barrier for lineariza-
tion (11, 802 cm−1) which is found to overestimate the most
recent empirical spectroscopic estimate by only 28 cm−1.
Additionally, the T-shaped N(2 D) · · · H2 van der Waals min-
imum is predicted to have a well depth of 90 cm−1, being
11 cm−1 deeper than the C∞v minimum. The title DMBE
form is therefore recommendable for dynamics studies of
both non-reactive and reactive N(2 D) + H2 collisions.
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1 Introduction

The N(4S,2 D,2 P)+H2 reaction has been the subject of con-
siderable theoretical and experimental work due to the fun-
damental importance of nitrogen reactivity in atmospheric
chemistry and combustion processes. Since the ground state
nitrogen atoms, N(4S), are often not very reactive, a major
interest has been focused on reactions involving their lowest
N(2 D) excited state.

During the past decade, the N(2 D) + H2(X 1�+
g ) →

NH(X 3�−)+H(2S) reaction has been studied using a LEPS
(London–Eyring–Polanyi–Sato) potential energy surface pro-
posed by Suzuki et al. [1], and a more realistic form
obtained by fitting ab initio data to a Sorbie–Murrell type
function [2]. Both theoretical studies concluded that the col-
linear (abstraction) path is dominant in the N(2 D)+H2(

1�+
g )

reaction, in agreement with a previous experimental result
which provides evidence that it proceeds via a direct hydro-
gen atom abstraction mechanism [3]. However, more recent
experimental results based on induced fluorescence [4,5]
and crossed molecular beam studies [6] suggest an inser-
tion mechanism for the title reaction. Such a controversy has
recently been clarified by using a global potential energy sur-
face for the 1 2 A′′ state of NH2 reported by Ho et al. [37].
This surface, obtained by using the reproducing Kernel Hil-
bert Space (RKHS) interpolation method [8–10], represents
an improved version of a previous RKHS surface [11] mod-
eled from a fit to high quality ab initio data. Both these
potential energy surfaces predict the N(2 D) + H2(

1�+
g )→

NH(X 3�−)+H(2S) reaction to proceed via a perpendicular
approach of the nitrogen atom to H2. In fact, quasiclassical
trajectory (QCT) calculations based on such potential en-
ergy surfaces show excellent agreement with the more recent
experimental measurements. There have been other ab ini-
tio potential energy surfaces for the title system. Of these,
we mention the surfaces of Buenker et al. [12] and Gabriel
et al. [13] for both the X̃ and Ã states of the bent–bent
Renner–Teller NH2 system. In fact, additionally to the
ab initio data, Gabriel et al. [13] carried out fits to their own
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data with a view to analyze the Ã 2 A1 − X̃2 B1 spectrum,
having achieved a high accuracy. They report a barrier height
of 11, 914 cm−1 for the linearization of NH2(X̃ 2 B1), al-
though a more recent estimate [14] based on an empirically
calibrated stretch-bender model points to a slightly lower
value of 11, 774 cm−1.

In this work, we report a realistic global potential energy
surface for NH2(1 2 A′′) based on double many-body expan-
sion (DMBE) [15–17] theory. Corresponding to a possible
fragment of larger Nx Hy species such as those of relevance
in studying the synthesis of ammonia, it may therefore play
a key role in the construction of global DMBE forms for
such polyatomic systems. Indeed, this has been a primary
motivation for modeling an accurate single-sheeted DMBE
potential energy surface for the title system.

To warrant that the potential energy surface dissociates to
the correct asymptotes, we make use of an improved switch-
ing function approach [18]. In turn, the calibration employed
1,498 ab initio points calculated at the multi-reference con-
figuration interaction (MRCI) level using the full valence
complete active space (FVCAS) as the reference function
and the augmented polarized quadruple zeta (aug-cc-pVQZ
or AVQZ) basis set of Dunning [19,20]. To extrapolate the
ab initio energies to the complete basis set/complete CI limit,
they have been corrected semiempirically by using the double
many-body expansion–scaled external correlation (DMBE-
SEC) [21] method. As usual in DMBE [15–17] theory, the
potential energy surface so obtained shows the correct long-
range behavior at the dissociation channels while provid-
ing a realistic representation at all interatomic separations.
For further realism, additional calculations of the long range
N(2 D)+H2(

1�+
g ) interaction have been carried using a com-

putationally more demanding aug-cc-pV5Z (AV5Z) basis
set [19,20], which were too corrected semiempirically by
using the DMBE–SEC method.

The paper is organized as follows. Section 2 describes
the ab initio calculations carried out in the present work,
while Sect. 3 focuses on their modeling using DMBE theory.
Specifically, Sect. 3.1 focuses on the two-body energy terms,
and Sect. 3.2 in the three-body ones. The major topographical
features of the DMBE potential energy surface are examined
in Sect. 4. Sect. 5 gathers the concluding remarks.

2 Ab initio calculations

The ab initio calulations have been carried out at the
MRCI [22] level using the FVCAS [23] wave function as ref-
erence. This involves seven correlated electrons in six active
orbitals (5a′ + 1a′′), amounting to a total of 50 configura-
tion state functions. The AVQZ atomic basis set of Dunning
[19,20] has been employed, and the calculations carried out
using the MOLPRO [24] package. To map the potential en-
ergy surface, a total of 1,532 points have been calculated
(34 estimated from nearby points through interpolation)
over N − H2 regions defined by 1 ≤ RH2/a0 ≤ 3.5,
1 ≤ rN−H2/a0 ≤ 11, and 0◦ ≤ γ ≤ 90◦ while, for H − NH,

they cover geometries defined by 1.5 ≤ RNH/a0 ≤ 3.5,
1 ≤ rH−NH/a0 ≤ 10, and 0◦ ≤ γ ≤ 180◦; R, r , and γ are
the atom–diatom Jacobi coordinates. For improved accuracy,
44 of the above ab initio points have been calculated using the
AV5Z basis set [19,20] for geometries encompassing the N−
H2 van der Waals minimum: RH2 =1.2, 1.401, 1.6 a0, 5.5 ≤
rN−H2/a0 ≤ 8.0, and γ =4◦, 8◦, 15◦, 30◦, 45◦, 60◦, 75◦.

To account for electronic excitations beyond singles and
doubles and, most importantly, for the incompleteness of
the basis set, the calculated ab initio energies have been se-
miempirically corrected using the DMBE–SEC [25] method.
Accordingly, the total DMBE–SEC interaction energy is
written as

V (R) = VFV C AS(R) + VSEC (R) (1)

where

VFV C AS(R)=
∑

AB

V (2)
AB,FV C AS(RAB)+V (3)

ABC,FV C AS(R) (2)

VSEC (R) =
∑

AB

V (2)
AB,SEC (RAB) + V (3)

ABC,SEC (R) (3)

and R = {RAB, RBC, RAC} is a collective variable of all in-
ternuclear distances (these are equivalently denoted as {Ri },
with i = 1−3). Explicitly, the first two terms of the DMBE–
SEC series expansion assume the form:

V (2)
AB,SEC(RAB)

= V (2)
AB,FV C AS−C I SD(RAB) − V (2)

AB,FV C AS(RAB)

F (2)
AB

(4)

V (3)
ABC,SEC(R)

= V (3)
ABC,FV C AS−C I SD(R) − V (3)

ABC,FV C AS(R)

F (3)
ABC

(5)

Following previous work [25], the F (2)
AB parameter in Eq. (4)

has been chosen to reproduce the bond dissociation energy of
the corresponding AB diatomic. Rather than choosing F (3)

ABC
to mimic the empirical well depth of NH2(X̃ 2 B1) which is
somewhat uncertain (124.5 ± 0.2 kcal mol−1; the error bar
has been taken from the reported heat of formation [26]), we
have instead fixed F (3)

ABC at the average of the 3 two-body
F-factors. For the AVQZ basis set, such a procedure leads to
F (2)

HH = 0.9773, F (2)
NH = 0.9479, and F (3)

NHH = 0.9577. In turn,

for the AV5Z basis set, the scaling factors are F (2)
HH = 0.9904,

F (2)
NH = 0.9786, and F (3)

NHH = 0.9825. Since our MRCI ener-
gies have been extrapolated to the complete basis set/config-
uration interaction limit, we judged it unnecessary to correct
the results for the basis set superposition error [27].

3 Single-sheeted potential energy surface

An approximate representation of a multi-sheeted potential
energy surface by a single-sheeted form involves necessar-
ily the use of switching functions. Such a procedure has first
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a) b)

Fig. 1 Switching function used to model the single-sheeted NH2 double many-body expansion (DMBE) potential energy surface. Shown in the
le f t panel is the fit of the h(R1) switching form to the ab initio points calculated for N + H2 configurations as a function of the H–H distance
(R1). Shown in the right-hand side panel is a perspective view of the global switching function in Eq. (11)

been proposed by Murrell and Carter [18], who applied it
in the construction of an approximate potential energy sur-
face for the ground-state of H2O. In their paper, they have
employed the switching function

f (R) = 1

2
{1 − tanh[(3ρ3 − ρ1 − ρ2)(α/2)]} (6)

where ρi = Ri − R0
i are the displacements from a reference

geometry (R3 is the H − H distance, R1 and R2 the O − H
ones), and α is a range-determining parameter. Such a func-
tion allows the O(1 D) state to appear in the O(1 D)+H2(

1�+
g )

channel (i.e., for ρ1, ρ2 → ∞) while being absent in the
OH(2�) + H(2S) channel (ρ3 → ∞). A similar situation
holds for the title system, where the following dissociation
scheme applies:

NH2(1
2A′′) → H2(X 1�+

g ) + N(2 D), (7)

→ NH(X 3�−) + H(2S). (8)

Since NH(3�−) dissociates to ground-state atoms, it is nec-
essary to introduce a function that removes the N(2 D) state
from this channel. However, as noted in [18], the function (6)
cannot reach a unique value at the three-atom limit. Such an
inconsistency prompted us to develop a more realistic switch-
ing function. We suggest the form

h(R1) = 1

4

2∑

i=1

{1 − tanh[αi (R1 − Ri0
1 )

+βi (R1 − Ri1
1 )3]} (9)

where R1 represents the H − H distance, and αi and βi (i =
1, 2) are parameters to be calibrated from a least-squares fit
to an extra set of 15 AVQZ points that control the N(2 D) −
N(4S) decay as the H − H distance increases for N + H2
configurations (see the left-hand-side panel of Fig. 1). As a
check to the fit, we observe that at R1 =1.401 a0 the switching
function differs by less than 10−6 from unit, thus warranting
the correct energetics at the N(2 D)+H2(X 1�+

g ) asymptote.

To get a smooth three-body energy term, we further suggest
to multiply Eq. (9) by an amplitude function that annihilates
Eq. (9) at short-range regions (short N − H2 distances):

g(r1) = 1

2
{1 + tanh[α(r1 − r0

1 )]} (10)

where r1 is the distance of the N atom to the center of mass of
H2. A word is necessary at this point to clarify the notation.
If the indexes (i, j, k) number the atoms (say, 1 for N, and 2
and 3 for H), ri represents the Jacobi coordinate separating
atom i from the center of mass of diatom jk whose bond
distance is itself denoted by Ri . The final switching function
then assumes the form

f (R) = g(r1)h(R1) (11)

with the parameters of g(r1) being chosen such as to warrant
that its main effect occurs for N−H2 distances larger than 8 a0
or so (see the right-hand side panel of Fig. 1). The numerical
values of all parameters in Eq. (11) are collected in Table 1.

Table 1 Parameters in the switching function of Eq. (11)

Parameter Numerical value

α1 0.718244
α2 0.719351
β1 0.493967
β2 0.066742
R10

1 2.417270

R11
1 4.355230

R20
1 3.435560

R21
1 5.520390

α 0.75
r0

1 5.5
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Within the framework of DMBE theory, the single-sheeted
potential energy surface is written as

V (R) = V (1)

N(2 D)
f (R) +

3∑

i=1

[V (2)
EHF(Ri )

+V (2)
dc (Ri )] + [V (3)

EHF(R) + V (3)
dc (R)] (12)

where V (1)

N(2 D)
represents the difference in energy (at the scaled

AVQZ level) between the 2 D and 4S states of atomic nitro-
gen: V (1)

N(2 D)
= 0.09014 Eh. For simplicity, we denote the

resulting DMBE potential energy surface by V (R), although
this should not be confused with the scaled ab initio energies
calculated in Eq. (1) which are used to calibrate Eq. (12). The
following sections give the details of the analytical forms em-
ployed to represent the various energy terms in the latter.

3.1 Two-body energy terms

The potential energy curves for the two-body fragments are
based on the extended Hartree–Fock approximate correlation
energy method for diatomic molecules including the united
atom limit [28] (EHFACE2U) which show the correct behav-
ior at both the asymptotic limits R → 0 and R → ∞. They
are given by the sum of two terms: (a) the extended-Hartree-
Fock energy:

VEHF(R) = − D

R

(
1 +

n∑

i=1

air
i

)
exp(−γ r) (13)

where r (without any subscript) denotes the displacement
coordinate relative to the equilibrium geometry of the dia-
tomic, r = R − Re; (b) the dynamical correlation energy:

Vdc(R) = −
∑

n=6,8,10

Cnχn(R)R−n (14)

where

γ = γ0
[
1 + γ1 tanh(γ2r)

]
(15)

and

χn(R) =
[

1 − exp

(
−An

R

ρ
− Bn

R2

ρ2

)]n

(16)

is a charge-overlap damping function for the long-range dis-
persion energy (as well as the electrostatic and induction
energies, in case these must be considered). In turn, An =
α0n−α1 and Bn = β0 exp(−β1n) are auxiliary functions [15,
29]; α0 = 16.36606, α1 = 0.70172, β0 = 17.19338, and
β1 = 0.09574. Moreover, ρ = 5.5 + 1.25R0 is a scaling

parameter, R0 =2(〈r2
A〉 1

2 + 〈r2
B〉 1

2 ) is the LeRoy [30] param-
eter for the onset of the undamped R−n expansion, and 〈r2

X〉
is the expectation value of the squared radius for the out-
ermost electrons of atom X (X = A, B). Finally, D and
ai (i = 1, . . . , n) in Eq. (13) are adjustable parameters to be
obtained as described elsewhere [15,28]. Here, we employ

the accurate EHFACE2U potential energy curve of ground-
state H2(X1�+

g ) reported in [31], and the curve of ground-
state imidogen, NH(X3�−), modeled [32] from MRCI+Q ab
initio points [33]. As shown in Fig. 2, both potential curves
mimic accurately the ab initio energies calculated in the pres-
ent work, being for completeness numerically defined in
Table 2.

Fig. 2 EHFACE2U potential energy curves for NH(X 3�−) and
H2(X 1�+

g ). The solid dots indicate the multi-reference configuration
interaction (MRCI) points calculated in the present work

Table 2 Parameters of two-body potential energy curves in Eqs. (13)–
(16)

NH(X3�−) H2(X1�+
g )

Re/a0 1.9650 1.401
D/Eh 0.22903401 0.22979439
a1/a0

−1 2.14664173 1.82027480
a2/a0

−2 0.84471252 0.52437767
a3/a0

−3 0.52590829 0.36999610
γ0/a0

−1 1.563792 1.094670
γ1/a0

−1 0.661116 1.009737
γ2/a0

−1 0.282985 0.235856
Ã/Eha0

−α̃ −0.8205
ã1/a0

−1 0
α̃ 2.5
γ̃ /a0

−1 2.0
R0/a0 6.6570 6.9282
C6/Eha0

−6 12.27 6.499
C8/Eha0

−8 232.6 124.4
C10/Eha0

−10 5,775 3286.0
C11/Eha0

−11 −3475
C12/Eha0

−12 121,500
C13/Eha0

−13 −291,400
C14/Eha0

−14 6,061,000
C15/Eha0

−15 −23,050,000
C16/Eha0

−16 393,800,000
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Table 3 Numerical values of the parameters in Eq. (19)

C0
6 (R) C2

6 (R) C0
8 (R) C2

8 (R) C4
8 (R) C0

10(R)

N − H2

RM/a0 3.4158 3.2065 3.1636 3.0873 3.0865 2.9727
DM/Eh 5.9304 3.7795 270.9628 368.8294 28.4794 12092.994

a1/a0
−1 1.20680520 0.48898303 0.665 91220 0.76028418 0.83439744 0.48401110

a2/a0
−2 0.37773924 0.01948220 0.11981357 0.16713192 0.21372145 0.10838466

a3/a0
−3 0.04733974 −0.01028989 0.05013767 0.00786882 0.01482201 0.06850918

b2/a0
−2 0.20828895 0.23889466 0.23466806 0.24666219 0.50597119 0.25442128

b3/a0
−3 2.7 × 10−9 2.4 × 10−9 5.4 × 10−10 1.2 × 10−8 6.9 × 10−9 7.9 × 10−9

H − NH
RM/a0 3.4400 3.2341 3.5037 3.2923 3.2491 3.5428
DM/Eh 3.3090 3.0188 57.5906 183.9318 14.6299 1311.7401

a1/a0
−1 1.63305447 0.57469334 1.805 549 07 1.06820652 1.23496592 0.83907020

a2/a0
−2 0.75223477 0.03086175 0.79931630 0.32533177 0.34210854 −1.10009919

a3/a0
−3 0.11845516 0.04274567 0.13285442 0.02961379 −0.02301909 −0.24807000

b2/a0
−2 0.33443828 0.40497290 0.598195 06 0.34725053 0.75739797 0.59610795

b3/a0
−3 2.2 × 10−9 6.7 × 10−9 0.052 923 95 1.3 × 10−8 5.7 × 10−9 0.105 297 09

3.2 Three-body energy terms

3.2.1 Three-body dynamical correlation energy

This three-body energy term assumes the following semiem-
pirical form [31]:

V (3)
dc = −

∑

i

∑

n

fi (R)C (i)
n (Ri , θi )χn(ri )r

−n
i (17)

where ri , θi and Ri are the Jacobi coordinates corresponding
to a specific geometry of the triatomic (see Fig. 1 of [25]),
and fi = 1

2 {1 − tanh[ξ(ηRi − R j − Rk)]} is a convenient
switching function; corresponding expressions apply to R j ,
Rk , f j , and fk . Following recent work on HCN [34], we
have fixed η = 6 and ξ = 1.0 a0

−1. Regarding, the damping
function χn(ri ), we still adopt [31] Eq. (16) but replace R by
the center-of-mass separation for the relevant atom–diatom
channel. In addition, the value of ρ has been optimized by
a trial- and-error procedure to mimic the asymptotic long-
range behavior of the dynamical correlation energy, leading
to ρ = 16.125 a0.

The atom–diatom dispersion coefficents in Eq. (17) as-
sume their usual form

C (i)
n (Ri ) =

∑

L

C L
n (R)PL(cos θi ), (18)

where PL(cos θi ) denotes the Lth Legendre polynomial. The
expansion in Eq. (18) has been truncated by considering only
the coefficients C0

6 , C2
6 , C0

8 , C2
8 , C4

8 , and C0
10; all other coeffi-

cients have been assumed to make a negligible contribution,
and hence neglected. To estimate the dispersion coefficients
we have utilized the generalized Slater–Kirkwood approx-
imation [35] and dipolar polarizabilities calculated in the
present work at the MRCI/AVQZ level. As usual, the atom–
diatom dispersion coefficients so calculated for a set of inter-
nuclear distances have then been fitted to the form

C L ,A−BC
n (R)=C L ,AB

n +C L ,AC
n

+DM

(
1 +

3∑

i=1

air
i

)
exp

(
−

3∑

i=1

bir
i

)
(19)

where C L ,AB
n , for L = 0, are the corresponding atom–atom

dispersion coefficients (see Table 2; for L 	= 0, C L ,AB
n = 0),

and b1 = a1. The least-squares parameters that result from
such fits are collected in Table 3, while their internuclear de-
pendences are displayed in Fig. 3. Note that, for R = 0, the
isotropic component of the dispersion coefficient is fixed at
the corresponding value in the A − X pair, where X repre-
sents the united atom of BC at the limit of a vanishingly small
internuclear separation.

As noted elsewhere [31], Eq. (17) causes an overestima-
tion of the dynamical correlation energy at the atom–diatom
dissociation channels. To correct such a behavior, we have
multiplied the two-body dynamical correlation energy for the
i th pair by

∏
j 	=i

(
1 − f j

)
(correspondingly for channels j

and k). This ensures [31,34] that the only two-body contri-
bution at the i th channel is that of JK.

3.2.2 Three-body extended Hartree–Fock energy

By removing, for a given triatomic geometry, the sum of
the one-body and two-body energy terms from the corre-
sponding DMBE–SEC interaction energies in Eq. (1) which
were defined with respect to the infinitely separated ground-
state atoms, one obtains the total three-body energy. By then
subtracting from this the three-body dynamical correlation
contribution of Eq. (17), one gets the three-body extended
Hartree–Fock energy. This has been modeled via a three-
body distributed-polynomial [36] form
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Fig. 3 Dispersion coefficients for the atom–diatom asymptotic chan-
nels of NH2 as a function of the corresponding diatomic internuclear
distance

V (3)
EHF =

5∑

j=1

{
P( j)(Q1, Q2, Q3)

×
3∏

i=1

{
1 − tanh

[
γ

( j)
i

(
Ri − R( j),ref

i

)]} }
(20)

where all the polynomials P( j)(Q1, Q2, Q3) are written in
terms of symmetry coordinates (for definition of the latter,
see, [36]). Note that all polynomials are of sixth order, except
the fifth one which is of fourth order. Figure 4 displays the ref-
erence geometries that have been used to define the displace-
ment coordinates involved in Eq. (20). To obtain R( j),ref

i , we
have first assumed their values to coincide with the bond dis-
tances of the associated stationary points. Such a restriction
has subsequently been relaxed, with the optimum geometry
being obtained via a trial-and-error procedure such as to re-
duce the root-mean-square-deviation (rmsd) of the final least
squares fit. A similar procedure has been employed to set
the nonlinear range-determining parameters γ

( j)
i . The com-

plete set amounts to a total of 222 linear coefficients ci , 15
nonlinear ones γ

( j)
i , and 15 reference geometries R( j),ref

i .
A total of 1, 532 points (including those referring to the
N − H2(

1�+
g ) van der Waals regions, and some interpolated

ones) covering an energy range of over 2, 400 kcal mol−1

above the NH2 global minimum has been used. Note that
special weights have been attributed during the calibration

a) b) c)

d)

e)

Fig. 4 Reference geometries used to define the three-body extended
Hartree-Fock (EHF) part of the potential energy surface (distances in
atomic units)

procedure to the points close to stationary points; the
complete list of ab initio energies and least-squares weights
actually employed for the final fit may be obtained from the
authors upon request. Table 4 gathers the values of the least-
squares parameters.

The stratified rmsd of the final potential energy surface
with respect to all fitted ab initio energies are reported in
Table 5. As shown, the final potential energy surface fits the
regions up to the linear and C2v barriers (∼ 130 kcal mol−1

above the global minimum) with a rmsd of < 0.4 kcal mol−1

and a maximum deviation of < 2.8 kcal mol−1. Not surpris-
ingly, the major (yet small) deviations occur at highly repul-
sive regions of the potential energy surface. Despite this, the
DMBE form is seen to fit the ab initio data with chemical
accuracy, with a stratified rmsd � 1 % of the energy for the
given stratum. Note that only a small percent of the points
(< 16 %, this being for the whole range of energies) have
a deviation larger than the calculated rmsd. Thus, although
the fit might be improved by adding other polynomials, no
attempt was deemed to be justified due to the unavoidable
errors at regions close to the crossing seam.

4 Features of the potential energy surface

Table 6 compares the attributes of the stationary points of
the DMBE potential energy surface with those of other the-
oretical potentials for ground state NH2, especially the most
recent work of Ho et al. [7] (see also this reference for fur-
ther comparisons). As expected, the DMBE surface predicts
a lower barrier for the perpendicular insertion of the nitro-
gen atom into H2. The predicted geometry and well depth of
the global minimum are seen to be basically coincident with
those reported by Ho et al. [7] who have based their func-
tion on MRCI calculations using an AVTZ basis set (hereto-
fore denoted by MRCI/AVTZ, and correspondingly for other
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Table 4 Numerical values of the extended Hartree–Fock (EHF) energy [Eq. (20)]

Coefficients P(1) P(2) P(3) P(4) P(5)

c1/a0
0 0.28972574 −2.23883819 −4.82026636 −10.34547901 0.00336417

c2/a0
−1 −0.55810849 1.34798852 −13.32989155 6.82146451 0.00402458

c3/a0
−1 0.35597867 2.51479201 5.20391403 −16.51164712 0.00771292

c4/a0
−2 0.03011379 0.04660040 −6.98310018 4.19257033 0.01268136

c5/a0
−2 0.25264641 0.32033747 −1.76174899 −3.15318437 0.01274666

c6/a0
−2 0.07150504 0.07961873 13.14913342 −16.43761499 0.03631929

c7/a0
−2 −0.00252553 −0.21360102 2.40680438 −3.61361568 −0.01501876

c8/a0
−3 −0.21020530 0.33599947 −2.51660228 2.56964682 0.00517592

c9/a0
−3 −0.01034405 −0.02985039 −2.18746772 −3.09554468 0.02417986

c10/a0
−3 −0.00563727 −0.15730581 −0.58279739 1.17297483 0.00682636

c11/a0
−3 −0.40826443 0.23927521 3.14929292 −1.27957617 0.02804054

c12/a0
−3 0.00437155 0.33805178 −1.50882772 4.26944653 −0.02483353

c13/a0
−3 0.24320295 0.52130976 −0.82580774 −0.49508061 0.02143404

c14/a0
−4 0.00581370 0.10163321 −0.71370355 0.89781794 −0.00164759

c15/a0
−4 0.05288872 0.14376423 −2.89543978 1.03355863 −0.00195096

c16/a0
−4 0.07532079 0.01518369 −0.16687247 0.32623867 0.00319575

c17/a0
−4 −0.03234647 0.02334543 0.17918664 −1.06417943 0.00349031

c18/a0
−4 −0.01099316 −0.21441955 3.47245330 −2.63944411 −0.00604896

c19/a0
−4 0.03642900 0.03273485 1.73645519 −1.18691152 0.00062813

c20/a0
−4 0.15570612 −0.05901273 2.18616814 −4.71082073 0.00668133

c21/a0
−4 −0.03994482 −0.02320849 −0.18076633 1.00046730 0.00318550

c22/a0
−4 −0.05956185 0.07340589 0.14178975 −0.67036214 −0.00255943

c23/a0
−5 −0.00621797 −0.00084108 −0.06377893 0.14299508

c24/a0
−5 −0.02764205 −0.05366966 0.53031223 −0.99916190

c25/a0
−5 0.01514678 −0.02402850 0.43331974 −0.82278451

c26/a0
−5 −0.02854379 −0.01843950 −0.36266437 0.22691603

c27/a0
−5 −0.01063750 −0.00336688 −0.16888422 0.40056270

c28/a0
−5 −0.02862361 0.02767599 −0.27565869 0.75973486

c29/a0
−5 0.02458300 −0.00764734 −0.33960193 0.95557878

c30/a0
−5 −0.02140507 0.08481649 −0.99355561 1.23475350

c31/a0
−5 −0.05777760 −0.01127916 0.37535466 −0.18269793

c32/a0
−5 −0.01665148 0.05385674 −0.57480428 0.97068822

c33/a0
−5 0.02122847 0.01730448 −0.33531560 0.49320770

c34/a0
−5 0.01914194 −0.01763677 0.06028977 −0.22657901

c35/a0
−6 0.00247218 0.00528895 −0.02671849 0.01997170

c36/a0
−6 −0.01211048 0.00385499 −0.14913457 0.03988751

c37/a0
−6 −0.00711497 −0.00795683 −0.18350113 0.19528166

c38/a0
−6 −0.01872577 −0.00071293 0.16239653 −0.07885454

c39/a0
−6 −0.01205357 −0.00401599 0.12562857 −0.09168383

c40/a0
−6 0.00413216 −0.00077721 −0.02558218 0.02345618

c41/a0
−6 −0.00414042 −0.00042295 −0.01396550 0.02710977

c42/a0
−6 0.00126063 −0.01642519 0.17919501 −0.03676125

c43/a0
−6 0.01332372 −0.00906645 0.21487615 −0.00597842

c44/a0
−6 −0.03787771 0.00117807 0.31174108 −0.28878921

c45/a0
−6 −0.02600113 0.00820752 −0.19069192 0.07088748

c46/a0
−6 0.01181454 0.00821036 0.15454689 −0.24948561

c47/a0
−6 0.00951985 0.01190600 0.15238190 −0.23974016

c48/a0
−6 0.01278203 0.00159730 −0.06594640 0.01599530

c49/a0
−6 −0.00486393 0.00644670 −0.08568753 0.10016699

c50/a0
−6 −0.00142419 −0.00027149 0.01609771 −0.02005957
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Table 4 (Contd.)

Coefficients P(1) P(2) P(3) P(4) P(5)

γ
( j)
1 /a0

−1 1.45 0.40 0.35 0.75 3.95

γ
( j)
2 /a0

−1 0.50 0.80 0.85 0.75 0.65

γ
( j)
3 /a0

−1 0.50 0.80 0.85 0.75 0.65

R( j),ref
1 /a0 1.50 2.50 3.50 3.70 1.40

R( j),ref
2 /a0 4.00 3.00 2.00 1.85 6.55

R( j),ref
3 /a0 4.00 3.00 2.00 1.85 6.55

Table 5 Stratified maximum and root-mean-square deviations (in kcal mol−1) of double many-body expansion (DMBE) potential energy surface

Energy N a) max. dev.b) rmsd N c)
>rmsd

10 127 0.187 0.031 13

20 141 0.205 0.045 17

30 159 2.160 0.189 8

40 184 2.160 0.251 15

50 197 2.160 0.255 20

60 218 2.160 0.283 30

70 236 2.160 0.289 37

80 259 2.160 0.296 45

90 292 2.160 0.311 55

100 404 2.160 0.286 71

120 600 2.515 0.341 88

140 922 2.855 0.359 143

160 1,197 2.855 0.378 193

180 1,372 3.304 0.409 222

200 1,421 3.806 0.428 224

250 1,442 3.806 0.442 227

500 1,475 3.806 0.457 238

1000 1,493 3.806 0.474 237

2000 1,497 3.806 0.474 239

2400 1,498 3.806 0.474 240

a)Number of calculated multi-reference configuration interaction/ aug-cc-pVQZ (MRCI/AVQZ) and aug-cc-p V5Z (AV5Z) points up to the indi-
cated energy range
b)Maximum deviation up to the indicated energy range
c)Number of calculated MRCI/AVQZ and AV5Z points with an energy deviation larger than the root-mean-square deviation (rmsd)

basis sets). Note that the scaling of the dynamical correla-
tion leads to a MRCI/AVQZ well depth for NH2(X̃ 2 B1) of
126.4 kcal mol−1 which is identical to the one obtained from
the MRCI/AVTZ calculations after correcting for the triple
and quadruple excitations using the Davidson correction [11]
(except where mentioned otherwise, we will keep the nota-
tion MRCI/AVTZ to denote the corrected calculations at this
level). Note further that the uncorrected MRCI/AVTZ calcu-
lations [11] lead to a well depth of 125.5 kcal mol−1, which
compares with the value of 125.9 kcal mol−1 obtained in the
present work at the corresponding MRCI/AVQZ level. Thus,
for the AVTZ calculations, the Davidson correction leads
to a further increase of 0.4 kcal mol−1 in the well depth of
NH2(X̃ 2 B1) when compared with the MRCI/AVQZ results
from the present work after correction by the DMBE–SEC

method. Table 6 also shows that the harmonic frequencies
are very similar for the MRCI/AVTZ and DMBE-SEC sur-
faces, with the differences being smaller than about 50 cm−1.
The same observation extends to the DMBE surface. We
emphasize that a dense grid of points has been calculated
in the vicinity of the global minimum, with the rmsd of the
DMBE least-squares fit to such points being ∼ 0.3 cm−1

(∼ 0.08 cm−1 for the direct fit of a cubic polynomial in
valence coordinates to the DMBE–SEC data).

For the C2v barrier, the DMBE potential energy surface
predicts a barrier height which is 0.36 kcal mol−1 higher than
that predicted by the Ho et al. [7] form (0.23 kcal mol−1

higher than their previous ab initio estimate [11]) but
0.15 kcal mol−1 below the MRCI calculations reported by
Takayanagi et al. [37] using a somewhat less flexible
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Table 6 Stationary points at the valence region of NH2(1 2 A′′) potential energy surface

Feature Property Ab initioa Ab initiob RKHSb,c DMBE-SECd DMBEc,d

Global minimun R1/a0 3.04 3.04 3.0288 3.0291
R2/a0 1.9445 1.94 1.9406 1.9405
re

1/a0 1.21 1.20 1.2135 1.2131
	 HNHf 102.7◦ 102.7◦ 102.6◦ 102.6◦
V/Eh −0.2858 −0.2858
�V g −126.4 −126.4 −126.4 −126.4
ω1(N − H)sym/cm−1 3,340 3,350 3,377 3,383
ω2(N − H)asym/cm−1 3,435 3,436 3,443 3,457
ω3(bend)/cm−1 1,542 1,559 1,523 1,541

C2v barrier R1/a0 1.42 1.42 1.42 1.4203 1.4198
N(2 D) − H2 R2/a0 3.96 4.05 4.05 3.9561 3.9349

r1/a0 3.90 3.99 3.99 3.8918 3.8703
	 HNH 20.7◦ 20.2◦ 20.2◦ 20.7◦ 20.8◦
V/Eh −0.0809 −0.0809
�V g 2.31 1.8 1.8 2.16 2.16

ω1(H − H)(cm−1) 4,239 4,240 4,223 4,209
ω2(N · · · H2)(cm−1) 501i 499i 547i 499i
ω3(H2 rot.)(cm−1) 324 325 385 282

C∞v barrier R1/a0 1.52 1.539 1.54 1.5121
N − H − H R2/a0 2.94 2.913 2.93 2.9010

r1/a0 3.70 3.68 3.70 3.6570
V/Eh −0.0763
�V g 4.61 4.8 4.8 5.1

ω1(H − H)(cm−1) 3,031 2,616 2,671
ω2(N − H)(cm−1) 1,031i 1,032i 1,455i
ω3(bend)(cm−1) 818i 764i 844i

a) Ref. [37].
b) Ref. [7].
c)Fit.
d)This work.
e) The experimental value reported in [11] is 1.21 a0.
f) The experimental value reported in [11] is 103.0◦
g)Relative to the N(2 D)+ H2 asymptote (in kcal mol−1). At this limit, the full valence complete active space (FVCAS) and MRCI/aug-cc-pVQZ
energies are −55.45066862 Eh and −55.60375691 Eh, respectively

cc-pVTZ basis set. Note that those potential energy surfaces
[7,11,37] employ ab initio diatomic curves calculated at the
corresponding level of ab initio theory, whereas in our case
they have been corrected by scaling the dynamical correlation
such that the full curve mimics the best available estimate for
the well depth (see Sect. 2). Recall now that the three-body
scaling factor used in the DMBE–SEC method is obtained
as the average of the two-body ones. Thus, the attributes of
the triatomic potential are true predictions of the method.
For example, the calculated bond length and dissociation en-
ergy for H2 (including the one-body term referring to the
energy difference between the 4S and 2 D electronic states of
atomic nitrogen) at the MRCI/AVTZ level are Re =1.404 a0
and De = −0.082762 Eh while the corresponding attributes
of the EHFACE2U (or SEC) curve are Re = 1.401 a0 and
De = −0.084336 Eh. As shown in Fig. 5, the H2 asymp-
tote in the DMBE potential energy surface lies therefore
0.987 kcal mol−1 below the MRCI/AVTZ curve obtained by
interpolation using the RKHS method [7]. Similarly, a fit to
the dense grid of unscaled MRCI/AVQZ points close to the
C2v saddle point calculated in the present work leads to a

barrier height relative to the unscaled MRCI/AVQZ curve
for H2 of 2.19 kcal mol−1, i.e., the scaling of the dynami-
cal correlation is predicted to yield a stabilization of only
0.03 kcal mol−1 relatively to the unscaled calculations.
Assuming that the Davidson correction would lead to an ex-
tra lowering similar to the value encountered for the equilib-
rium geometry, one would predict a barrier height for the
C2v insertion of N(2 D) into H2 of 2.19 − 0.4 − 0.03 =
1.76 kcal mol−1, in surprisingly good agreement with the
value of 1.8 kcal mol−1 reported for the MRCI/AVTZ cal-
culations [7,11]. Instead, if we use their estimated [7,11]
AVTZ Davidson correction (0.36 kcal mol−1) at the C2v sad-
dle point one gets 2.19−0.39=1.8 kcal mol−1, which yields
an AVQZ barrier height identical to the AVTZ one. This by
no means implies that the inclusion of the Davidson correc-
tion leads to a more reliable barrier height than the DMBE–
SEC method. In fact, this method has by construction the
advantage of mimicking the exact atom+diatomic asymp-
tote at the equilibrium geometry of the diatomic molecule.
Thus, further ab initio work and possibly dynamical calcula-
tions are necessary to ascertain which of the above estimates
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Fig. 5 A comparison of the H2 potential energy curves including the one-body term referring to the N(2 D) − N(4 S) excitation energy. The
dashed line shows the MRCI/AVTZ curve obtained by interpolation using the reproducing Kernel-Hilbert space (RKHS) method [7], while the
curve associated to the present DMBE potential energy surface is indicated by the solid line. Also shown are the MRCI/AVQZ (open dots) and
MRCI/AVQZ+DMBE-SEC (solid dots) energies calculated at r =20 a0. The reference energy refers to N(4 S) + H + H

Fig. 6 Contour plot for bond stretching in H − N − H, keeping the
included angle fixed at 102.5◦. Contours are equally spaced by 0.02 Eh,
starting at −0.282 Eh

(1.8 vs. 2.1 kcal mol−1) is the most realistic one. Finally,
Table 6 shows that there is a fairly good agreement between
the DMBE and RKHS [7] potential energy surfaces as far
the calculated vibrational frequencies are concerned, with the
largest absolute deviations not generally exceeding 60 cm−1.
Such deviations remain small when comparing the results
obtained by fitting a local polynomial with those obtained

Fig. 7 Contour plot for the C2v insertion of the N atom into H2. Con-
tours are equally spaced by 0.01 Eh, starting at −0.282 Eh. Shown in
dashed are contours equally spaced by 0.004 Eh, starting at −0.01 Eh.

from the DMBE potential energy surface, which corrobo-
rates the high quality of the present global fit.

The linear barrier has only been modeled via the final
DMBE fit, and hence its attributes may not have been so defi-
nitely characterized. It is seen that the barrier height slightly
overestimates previous theoretical values. Perhaps not
surprisingly, somewhat larger differences are also observed
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Fig. 8 Optimized C2v bending curve: dashed line, RKHS [7], dotted line, empirical [14]; continuous line, DMBE (this work)

for the corresponding harmonic frequencies. Despite this, we
may judge our results as providing an accurate representa-
tion of the true potential energy surface at the chosen level
of theory.

Figures 6, 7, 8, 9, 10, and 11 illustrate the major topo-
graphical features of the NH2(X̃2 B1) DMBE potential en-
ergy surface. Clearly, it has a smooth and correct behavior
over the whole configuration space. Also visible are its ma-
jor stationary points: C2v and linear barriers, and the global
minimum. Moreover, we observe from Fig. 7 the D∞h sad-
dle point associated to the linear 2� structure where the
X̃ and Ã Renner–Teller states of NH2 become degenerate.
This stationary point has been properly characterized, and
found to lie 11, 802 cm−1 above the minimum of the NH2
potential energy surface at a D∞h geometry with charac-
teristic bond length of R2 = R3 = 1.8695 a0 and frequen-
cies of ω1(N − H)symm = 3, 676 cm−1, ω2(N − H)asym =
6, 979 cm−1, and ω3(bend) = 1, 544 cm−1. Such a point
corresponds to the maximum at 180◦ in the optimized bend-
ing plot of Fig. 8, and corresponds in the RKHS function to
a bending barrier of 11, 879 cm−1. A notable feature from
this plot is the fairly good agreement between our optimized
bending curve and the one that we have obtained from the
RKHS [7] potential energy surface, which exceeds the most
recent empirical estimate [14] for the bending barrier height
by 105 cm−1. Interestingly, such a barrier for linearization
is predicted by the DMBE potential energy surface to be
only 28 cm−1 larger than the empirical result obtained from
the effective one-dimensional bending potential model of
Duxbury and Alijah [14]. Indeed, the agreement with the
latter is excellent over the whole range of angles shown in
Fig. 8, particularly for values larger than equilibrium where
the optimized DMBE curve is almost indistinguishable from
the empirical curve [14] within the scale of the figure. This is

Fig. 9 Contour plot for bond stretching in linear N − H − H configu-
rations. Contours are equally spaced by 0.01 Eh, starting at −0.125 Eh.
Shown in dash are contours equally spaced by 0.002 Eh, starting at
−0.003 Eh

a remarkable result since our fitted ab initio MRCI data points
correspond to energies computed for an optimized character-
istic bond length at each value of the valence angle ( 	 HNH).
We should also emphasize that the ab initio points of the
dense grid encompassing the 2� structure have been highly
weighted in the least-squares fitting procedure such as to
warrant an accurate description of the topographical features
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Fig. 10 Contour plot for a N atom moving around a H2 molecule fixed at the equilibrium geometry R1 =1.401 a0 and lying along the X -axis with
the center of the bond fixed at the origin. Contours are equally spaced by 0.005 Eh, starting at −0.161 Eh. Shown in dash are contours equally
spaced by −0.000035 Eh, starting at −0.084336 Eh

Fig. 11 Contour plot for a H atom moving around a NH diatomic fixed at the equilibrium geometry, RNH =1.965 a0, which lies along the X -axis
with the center of the bond fixed at the origin. Contours are equally spaced by 0.01 Eh, starting at −0.29 Eh. Shown in dash are contours equally
spaced by −0.00005 Eh, starting at −0.130208 Eh

of potential energy surface at those regions of configuration
space. Thus, we corroborate the recent trend to diminish the
barrier for linearization when comparing with earlier theo-
retical [12] and empirical [38] estimates.

Figures 10 and 11 illustrate also the long range part of the
potential energy surface which was fitted such as to provide
a reliable description of the van der Waals minimum for the
N −H2 interaction: the rmsd of all fitted points (with N−H2

distances larger than 5a0) in the energy range between the
van der Waals minimum and the dissociation limit, in a total
of 44 points, is 6.4 cm−1. Note that it shows a flat van der
Waals valley, with two minima: one at a C2v geometry and
the other at a C∞v one. Of these, the deepest minimum refers
to the T-shaped structure, although its well depth is only
0.032 kcal mol−1 (11.2 cm−1) larger than that of the collin-
ear one; see Table 7 for other attributes. It should be pointed
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Table 7 Attributes of N(2 D) − H2 van der Waals minima

Feature RKHSa DMBEb

C2v min.c C∞v min.c Cs s.p.d

RH−H/a0 1.405 1.3995 1.3994 1.3990
RN−H/a0 5.5571 6.2996 5.8191 5.7847
	 NHH 180◦ 90◦ 180◦ 153◦
�V (kcal mol−1) −0.2761 −0.2510e −0.2228e −0.2197e

ωf
1(intra)(cm−1) 4,392 4,428 4,394 4,405

ω
g
2(inter)(cm−1) 231 79 63 73

ωh
3(bend)(cm−1) 81 57 58 64i

aRef. [7]
bThis work
cvan der Waals minimum
dSaddle point connecting the two van der Waals minima
eRelative to the N(2 D)+H2 asymptote which is −55.45143412 Eh and −55.60727004 Eh at the FVCAS and MRCI/aug-cc-pV5Z levels, respec-
tively
f Associated to the intramolecular diatomic stretching frequency
gAssociated to the intermolecular atom-diatom stretching frequency
h Associated to the bending (nearly free-rotor) motion

Fig. 12 Cut of DMBE potential energy surface along the atom–diatom radial coordinate for a fixed diatomic bond distance of R1 =1.401 a0. The
solid points indicate the actually calculated MRCI/AV5Z energies, while the open circles have been estimated by using an extended-Rydberg
form (see the text). Shown in the inset are the curves for 0◦ and 90◦, which cross each other at about r1 =8.5 a0.

Table 8 Attributes of leading terms in Legendre expansion of N(2 D)−
H2 van der Waals potentials

Feature RKHSa DMBEb

Spherically averaged potential, V0
Rc

m(a0) 6.30 6.31
εd(kcal mol−1) 0.160 0.236

Leading anisotropic term, V2
Rc

m(a0) 6.10 9.59
εd(kcal mol−1) 0.052 0.005

aRef. [7]
bThis work
cGeometry of van der Waals minimum
dWell depth of van der Waals minimum

out that the van der Waals energies have been carefully fit-
ted by attributing large weights to the corresponding points.
Note that these energies correspond for N · · · H2 to AV5Z cal-
culations, which are computationally demanding and hence
have been carried out only for a small number of geome-
tries. To avoid oscillations in the final DMBE form, a num-
ber of other points have been obtained by interpolation using
reliable local procedures. For example, along the atom–dia-
tom coordinate (R), we have used an extended-Rydberg form
V = −D(1 + ∑N

i=1 ai si ) exp(−a1s) to interpolate between
the calculated points; s = R − Rm is the displacement coordi-
nate from the minimum associated to the chosen angle, and
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Fig. 13 Cut of DMBE potential energy surface along the Jacobi angle for a fixed diatomic bond distance of R1 =1.401 a0. Symbols as in Fig. 12.

Fig. 14 A comparison of the ab initio minimum energy paths for isomerization between the collinear and T-shaped van der Waals structures. Also
indicated is the corresponding path for the DMBE potential energy surface. For each Jacobi angle, the ab initio results have been obtained via a
quadratic interpolation. The diatomic bond distance has been fixed at R1 =1.401 a0

D and ai are least-squares parameters. Such a procedure has
also been employed to generate points at the intermediate dis-
tances between the last calculated point and the asymptote
where the dynamical correlation energy by far dominates.
Instead, to generate a few points at C2v geometries where
their convergence proved unsatisfactory, we have chosen a
parabolic angular dependence centered at 90◦. As shown in
the one-dimensional plots of Figs. 12 and 13, the final DMBE
form reproduces quite satisfactorily all fitted data. It should be
emphasized that the topography of the AV5Z potential energy

surface at the N · · · H2 van der Waals region differs drasti-
cally from the one calculated at the MRCI/AVTZ level, while
the MRCI/AVQZ one is intermediate and confirms the ten-
dency to the AV5Z results. This is illustrated in Fig. 14, which
shows the MRCI minimum energy paths for the above three
correlated consistent basis sets as a function of the Jacobi
angle (the points are approximate, and have been obtained
by interpolation of the three calculated energies closest to
the minimum for a given Jacobi angle by using a quadratic
form). Also indicated for comparison is the curve associated
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Fig. 15 Isotropic (V0) and leading anisotropic (V2) components of the N − H2 interaction potential, with the diatomic molecule fixed at the
equilibrium geometry. continuous line, DMBE; dashed line, RKHS; dotted line, three-body dynamical correlation term (leading to asymptotic
atom–diatom dispersion interaction at large distances) in Eq. (17). The axes in all panels have the same units. Note that in all panels the dotted
line lying closest to the r1 = RN−H2 axis at the reference energy refers to V2

to the DMBE potential energy surface. Clearly, the agreement
with the MRCI/AV5Z results is rather satisfactory, especially
recalling the discrepancy amongst the ab initio results them-
selves. Of course, an improvement could be obtained either
by increasing the order of the polynomial centered at the
T-shaped van der Waals minimum or adding an extra poly-
nomial centered at the linear van der Waals structure. For the
reasons given in Sect. 3 and given the coarse grid of calculated
MRCI/AV5Z points, such an approach did not seem justified.
In turn, the H · · · NH channel is purely attractive, and hence
no such calculations have been judged to be necessary there.

The isotropic and leading anisotropic potentials are two
important quantities for the study of N − H2 scattering pro-
cesses [39], being shown in panels (a)–(c) of Fig. 15 and
Table 8. Specifically, the isotropic average potential V0 deter-
mines how close on average the atom and molecule can
approach each other, while the magnitude of V2 indicates
whether or not the molecule prefers to orient its axis along
the direction of the incoming atom: a negative value favors the
collinear approach while a positive value favors the approach
through an isosceles triangular geometry. The barrier in V0
located near 3.5 a0 (see panel (a) of Fig. 15) corresponds to
the C2v transition state, as corroborated by the positive value
of V2 at such a distance. In turn, the negative sign of V2 at
distances larger than 8.5 a0, indicates that the van der Wa-
als interaction energy is larger for such collinear geometries
(see panel (b) of Fig. 15) as one would expect from the larger
polarizability of the hydrogen molecule along the internu-
clear axis. Note, however, that the anisotropy is positive at
the region of the van der Waals minimum in the isotropic
potential (V0). This is due to the deepest well associated to
the T-shaped van der Waals structure. This contrasts with the
RKHS surface, which predicts the van der Waals minimum

to occur at a collinear geometry. Recall that the MRCI calcu-
lations carried out using AVTZ, AVQZ, and AV5Z basis sets
corroborate the tendency to a shallow van der Waals valley
(see Fig. 13), with minima being located both at T-shaped and
collinear structures. The small bump in V2 between 6.5 and
7.5 a0 may be attributed to the fact that the T-shaped minimum
occurs at a slightly smaller atom–diatom bond distance than
the collinear van der Waals structure. Since the N(2 D) + H2
reaction has been shown to display a preference to occur via
an insertion mechanism, it is possible that this subtle detail
may have practical implications for the scattering especially
at low collision energies. We further observe that the spher-
ically averaged component of the RKHS [7] surface has a
slightly shallower van der Waals minimum in comparison
with the DMBE one but is somewhat more attractive at large
distances (see Table 8 for the numerical attributes of V0 and
V2). Moreover, the DMBE potential energy surface has a
significantly smaller anisotropy (the well depth of V2 is only
1.6 cm−1) than the RKHS [7] surface in accordance with the
trends predicted from the MRCI calculations; see the insert
of Figs. 12 and 14. Finally, we emphasize (see panel (c) of
Fig. 15) that the current potential energy surface reproduces
the assumed long-range interactions described in Sect. 3.2.1
both at the N(2 D) + H2 and H · · · NH asymptotes, a major
general asset of DMBE theory.

5 Concluding remarks

We have suggested an improved switching function formal-
ism that allows an accurate description of the ground state
potential energy surface of NH2 by a single-sheeted DMBE
form. This has been calibrated from newly calculated MRCI
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energies distributed over all geometries of chemical
relevance. Given the high level of the calculated ab initio
energies, the resulting DMBE potential energy surface is pos-
sibly the most accurate function reported thus far for the title
system, although it lies close to that obtained via a RKHS
interpolation [7]. Clearly, a more definite assessment of the
accuracy of the DMBE potential energy surface1 cannot be
made prior to use in dynamics calculations. Its simplicity
and quality suggest though that it should be recommendable
for both reactive and non-reactive studies of N(2 D) + H2
collisions.
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